Topics in Genomics and Computational Biology

Plant and Microbial Biology C246 Molecular and Cellular Biology C246

Steven E. Brenner

brenner246@compbio.berkeley.edu (510) 643-9131

Office hours: 2 hours per week, by appointment

Michael B. Eisen

mbeisen@rana.lbl.gov (510) 486-5214

Office hours, Thursday 1-3 PM.

Students successfully completing this course will have a general understanding of topics in computational biology and genomics, will be able to critically analyze and understand experiments and research articles in these fields, and will be able to perform standard computational genomics analyses.

Meetings Tu, Th 5-7 PM + 1 section (optional; to be scheduled)

LocationGPB107Course notesscribe systemCourse websitesc246.lbl.gov

Enrollment Limited to 44 (22 in each department)

Auditors May constitute maximum 10% of class; written application required

Grading letter grade or SAT/NS

25% class participation and preparation

attendance at 80% of classes mandatory

one formal presentation will be required of all students

25% homework

50% exams and project

10% midterm/40% final project

or

20% midterm/30% final exam

Prerequisites

Students are expected to have solid background in genetics and molecular biology. Ability to write simple programs strongly suggested; final projects, if selected, will typically require programming.

Course Material

No required textbook. Recommended references will available on course website. Additional material may be on reserve at biosciences library. Students will be expected to obtain information from journals and websites and to use web-based software. Access to a machine with molecular biology software and the internet will be essential (see instructors if access is a problem).

Topics

History of Genetics/Genomics

Genome Sequencing Methods

Sequence Assembly

Gene Finding

Homology

Uses of Homology

Comparative Genomics

Secondary Structure Prediction

Ab initio Folding Methods

Fold Recognition

Homology Modeling

Structure-Homology Relationships

Structure Comparison, Classification

Structural Genomics

ORFans

Systematics Methods

Phylogeny/Phylogenomics

DNA Arrays and Applications

Correlation Methods

Relationships Between Gene Expression and Genome Sequences

Non-coding DNA

Proteomics

Genomics and Tumor Classification

Genetic Mapping

Introns Early/Introns Late Debate

Systematic Footprinting

Systems Modeling